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Abstract: ZnSeO3 nanocrystals with an orthorhombic structure were synthesized by electrochemical
and chemical deposition into SiO2/Si ion-track template formed by 200 MeV Xe ion irradiation with
the fluence of 107 ions/cm2. The lattice parameters determined by the X-ray diffraction and calculated
by the CRYSTAL computer program package are very close to each other. It was found that ZnSeO3

has a direct band gap of 3.8 eV at the Γ-point. The photoluminescence excited by photons at 300 nm
has a low intensity, arising mainly due to zinc and oxygen vacancies. Photoluminescence excited
by photons with a wavelength of 300 nm has a very low intensity, presumably due to electronic
transitions of zinc and oxygen vacancies.

Keywords: SiO2/Si track template; chemical and electrochemical deposition; ZnSeO3 nanocrystals;
XRD study; quantum chemical calculation

1. Introduction

Quite a lot of time passed from the time of the first observation of ion tracks to their ap-
plication in various technological developments [1–3]. It should be noted that only the use
of high-energy ion accelerators made it possible to provide that huge breakthrough in the
development of the application and use of various ion-track technologies [4–9]. Now that
high-energy ion accelerator systems are available, a large number of such fundamentally
new experimental studies can be carried out [10–20].

Among these experiments, the targeted use of ion irradiation to form new nanostruc-
tured materials such as nanoclusters and nanowires should be noted, which have received
particularly great attention in the last twenty years due to their special physical properties
and new applications [21,22]. It is important to mention here that the so-called ion-track
template synthesis is one of the simplest and most inexpensive methods for obtaining metal
and semiconductor nanoclusters and nanowires [23–33]. The “ion-track etching” technique
is a quite industrial method that can be used to create nanoscale pores in a range of different
materials, including polymers, semiconductors, and dielectrics. Among them, SiO2 and
Si3N4, which are commonly used in semiconductor processing. Such nanoporous materials
could be used as templates for nanowire and nanotube synthesis. Etched pores could be
filled with various materials using the methods of chemical or electrochemical deposition.
As shown in the Table 1, different ensembles of CdTe nanocrystals, CdO and other binary
compounds, as well as wide-gap semiconductor oxides, such as ZnO, were successfully
formed by this method in SiO2/Si ion-track templates.
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Table 1. Examples of nanostructures obtained by ion-track template synthesis in SiO2/Si track templates.

No. Type of Nanostructure Method References

1
ZnO nanocrystals with structures

of sphalerite, wurtzite, and
rock salt

Electrodeposition [34,35]

2 CdTe nanocrystals

Electrodeposition, chemical
deposition.

Photoelectrochemical
deposition

[36–38]

3 PbSe nanocrystals Photoelectrochemical
deposition [39]

3 CdO nanocrystals Chemical deposition [37]

4 ZnSe2O5 nanocrystals Electrodeposition [40,41]

5 ZnSeO3 nanocrystals Electrodeposition present work

6 Cu and Ni nanocrystals Electrodeposition [42]

7 Layers of metallic Cu and Ni Electrodeposition [43]

8 Ag dendrites Chemical deposition [44]

9 Au nanostructures Chemical deposition [45]

Among them, zinc oxide occupies a very special place. ZnO-based materials can be
used as optoelectronic transducers, fluorescent materials, gas-sensor elements, and biolog-
ical sensors, catalysts, X-ray, and gamma radiation detectors [46–56]. These applications
of ZnO are usually considered for its crystalline wurtzite (WS) phase. This is because
under normal conditions, ZnO has the crystal structure of wurtzite. Possible applications of
various structural modifications of ZnO crystal in semiconductor technology are described
in [46,53,55–60]. The high symmetry of the crystal structure allows us to expect some
advantages, such as lower carrier scattering, higher doping efficiency, etc., which can be
used in various devices, such as radiation detectors [34,35,46].

From the point of view of obtaining new promising materials for optoelectronics,
nanoelectronics, and sensorics, a detailed study of nanomaterials based on other complex
zinc-based oxides obtained in SiO2/Si templates is of undoubted interest. Therefore, a
logical continuation of the work in [40,41], where the results of the synthesis of ZnSe2O5
were reported, is the synthesis and characterization of similar but simpler nanocrystals of
ZnSeO3, also obtained in SiO2/Si templates. Note that although in recent years several
successful attempts have been made to synthesize various types of thin films and nanos-
tructures based on ZnSeO3 [61–63], this work is the first demonstration of the possibility of
their synthesis in SiO2/Si templates.

2. Experimental
2.1. Fabrication of Track Templates and Template Synthesis

The SiO2/Si structure was prepared by thermal oxidation of a silicon substrate (n- or
p-type Si) in a wet oxygen atmosphere at 900 ◦C. The thickness of the silicon dioxide layer
according to ellipsometry was 700 nm.

Earlier, in [64,65], the simulation of track formation processes in SiO2/Si structures was
performed, as well as a comparison with experimental data. It was found that latent tracks
could be created in SiO2 film via irradiation with 84Kr or 132Xe ions if specific ionization
energy losses of these species were exceeding the threshold value. In our experiment,
SiO2/Si structures were irradiated with 200 MeV 132Xe ions to fluences of 107–108 ions/cm2.
At such small fluences, there are no tracks overlapping, and the background of radiation
defects introduced during irradiation is insignificant.
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Chemical etching of the ion-irradiated SiO2/Si structures was carried out in a 4%
aqueous solution of HF with the addition of palladium (m (Pd) = 0.025 g) at 25 ± 1 ◦C.
Before and after etching, the samples were subjected to ultrasonic cleaning of the surface.

Template synthesis was carried out using chemical deposition (CD) and electrodepo-
sition (ECD). The aqueous solution prepared from ZnSO4 (7.2 g/L) and SeO2 (0.2 g/L)
was used for CD. The precipitation times were 15, 20, and 25 min, and the precipitation
temperature was 20 ◦C. The same aqueous solution of ZnSO4 and SeO2 was used as an
electrolyte for ECD, too. The deposition of nanoprecipitates was carried out for 7 min at
50 ◦C in the potentiostatic mode at voltages of 1.5 and 1.75 V.

2.2. Diagnostics of SiO2/Si Templates with Deposited Nanoprecipitates

The morphology of the etched nanoporous SiO2/Si samples as well as the templates
with nanoprecipitates was investigated using a scanning electron microscope (SEM), JSM-
7500F. The crystallographic structure of the precipitates was investigated by X-ray diffrac-
tion (XRD). XRD patterns were obtained using the X-ray diffractometer D8 ADVANCE
ECO with Cu-anode comprised between angles of 2θ 30◦ and 110◦ in increments of 0.01◦.
The software Bruker AXSDIFFRAC.EVAv.4.2 and the international ICDD PDF-2 database
were used to identify the phases and study the crystal structure of Zn-based precipitates.

The photoluminescence (PL) spectra were recorded at room temperature using an
Agilent Technologies spectrofluorimeter (Cary Eclipse Fluorescence Spectrophotometer,
Santa Clara, CA, USA) in a spectral range from 300 to 800 nm at 300 nm excitation.

The HP 66312A current source and the 34401A Agilent (Santa Clara, CA, USA) multi-
meter were used to measure the electrical properties of created templates with nanoprecipi-
tates. Current–voltage characteristics (CVC) were taken from the area of filled nanochannels
of 0.3 cm2. The scheme of installation for CVC measuring was as follows: A sample with
deposited nanoprecipitates was placed between two metal plates which overlapped only at
the area of sample with nanochannels. The plates were then connected to the current source
in series connection of the multimeter. All CVCs were performed using a second-order
polynomial fitting.

3. Results and Discussion
SEM and XRD Analysis of Deposited Samples

SEM analysis of nanopores after etching and nanoprecipitates’ deposition allows to
control the size, shape, and “filling in” of nanopores. Figure 1 shows SEM images of the
templates after CD.

As the SEM images’ analysis showed, most of the template pores were filled after CD
for 15 min (the filling degree was 89.5%), and the filling degree was 51.3% and 40.2% after
CD for 20 and 25 min, respectively. With increasing the deposition time, a protrusion of the
deposited substance from the nanopores at the surface was clearly observed (Figure 1).

XRD patterns of the samples after chemical deposition are shown in Figure 2. The
corresponding crystallographic parameters of nanoprecipitates in ion-track templates
calculated from XRD data are summarized in Table 2. For XRD peak assignment of
orthorhombic ZnSeO3, the JCPDS-78-0446 pattern was used.
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Figure 1. SEM images of pore-filling after 15 min CD (a), 20 min CD (b), and 25 min CD (c), and 
obtained nanostructures formed on the surface (d). The pore diameter varied from 400 to 500 nm. 
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Table 2. Crystallographic parameters of ZnSeO3 nanoprecipitates in SiO2/Si templates calculated
from XRD data.

No. 2θ◦ hkl d, Å
The Size of
Crystallites

L, nm

Cell Parameters,
Å FWHM Density

ρ, (g/cm3)

1 46.38 241 1.956 12.1
5.9231
7.6652
5.0400

1.11 5.584

2
46.67
56.27
61.54

241
341
350

1.945
1.6335

1.50561
70.3

5.9231
7.6652
5.0400

0.94
0.11

0.180
5.584

3
46.66
56.00
61.33

241
341
350

1.945
1.6406
1.5103

84.82
5.8640
7.5767
5.0026

0.95
0.14
0.16

5.588

Analysis of XRD data for the samples obtained by CD showed the formation of ZnSeO3
nanocrystals with an orthorhombic crystal structure and the space group Pnma (see Figure 2
and Table 2).

Figure 3 shows SEM images of the surface after ED. One can see that the level of
pore filling was substantially lower in comparison with the samples formed by chemical
deposition. Therefore, the pore-filling degree was only 10% if the precipitate deposition
was carried out at a voltage of 1.5 V, and 16% if the deposition was carried out at a voltage
of 1.75 V. Possibly, it is necessary to increase the deposition voltage to achieve complete
filling of nanopores. This is a subject for future experiments.
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Figure 4 shows the diffractograms after ED, while XRD analysis results were collect in
Table 3.

Thus, the synthesing ZnSeO3 nanocrystals inside nanopores belong to orthorhombic
structure with space group Pnma was established.
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Table 3. XRD results of ED samples.

ED at 1.5 V

(hkl) 2θ◦ d, Å L, nm Cell Parameters, Å Degree of Crystallinity

121
240

33.060
56.432

2.70738
1.62924

54.89
164.17

a = 5.94052,
b = 7.66370
c = 5.06273

68.5%

ED at 1.75 V

121
240

33.137
56.470

2.70130
1.62823

74.04
155.56

a = 5.92538,
b = 7.60209
c = 5.04784

70.8%

4. ZnSeO3/SiO2/Si Photoluminescence and Current–Voltage Characteristic

The photoluminescence (PL) spectra were recorded, using an Agilent Technologies
spectrofluorimeter (Cary Eclipse Fluorescence Spectrophotometer), in the spectral range
from 300 to 800 nm at room temperature at 300 nm excitation.

The PL spectra of ZnSeO3/SiO2/Si present a wide band from 400 to 600 nm, as in
the case of ED synthesized ZnSe2O5/SiO2/Si [40]. The luminescence of ZnSe2O3 can be
expected, as for ZnSe2O5, as a combination of zinc oxide and zinc selenide luminescence.
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Similar to ZnO [66], the PL spectrum contains luminescence sub-bands of zinc vacancies
(VZn, 2.94 eV) and oxygen vacancies (VO). The bands observed in the PL spectrum in the
region 2.1 eV are similar to the PL band observed in ZnSe. This band is attributed by the
authors of [67] to a complex center consisting of a zinc vacancy and an impurity small
donor: VZn + D. As follows from Figure 5, the luminescence spectrum is quite complex
and consists of several components. Similar, though not so complicated spectra are also
observed in ZnO [47,66] and ZnSe [67,68]. A more accurate analysis of the excitation spectra
of individual luminescence bands will make it possible to more accurately decipher their
origin. However, this is beyond the scope of this work, but one subsequent article will be
devoted to this. We only note here that the complex nature of the luminescence spectrum
may also reflect the presence of a certain number of anti-site defects.
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The appropriate current–voltage characteristics (CVC) obtained for ZnSeO3/SiO2/Si
are presented in Figure 6. The HP 66312A current source and the 34401A Agilent (Santa
Clara, CA, USA) multimeter were used to measure their electrical properties. Current–
voltage characteristics (CVC) were taken from an array of filled nanochannels of 0.3 cm2.
The scheme of installation for CVC measurement is as follows: The sample with deposited
nanoprecipitates was placed between two metal plates, and the plates overlap only the
part where nanochannels are. The plates were then connected to the current source in
series connection of the multimeter. All CVCs were performed using a second-order
polynomial fitting.

In the structure of ZnSeO3/SiO2/Si, the Si substrate has n-type conductivity. From the
CVC analysis of the obtained CdTe (WZ NCs)/SiO2/Si structure [36], it can be argued that
this structure shows an electronic type of conductivity.
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5. Computer Modeling of ZnSeO3

We also performed non-empirical calculations of the ZnSeO3 crystal in the approxi-
mation of linear combinations of atomic orbitals (LCAO) using the exchange–correlation
functional within general gradient approximation (GGA) [69]. The calculations were
performed in the CRYSTAL program [70]. To describe the atoms of ZnSeO3 crystal, the
following Gauss-type function basic sets were chosen: the Jaffe basis [71] was used for the
zinc (Zn) and oxygen (O) atoms, and the Towler basis [72] for the selenium (Se) atom. To
better describe both the structural and electronic properties, the last sp-orbital from the
original Se basis was removed.

It is known that for a better description of the electronic structure of a crystal, it
is necessary to accurately determine the total energy of the crystal cell [73,74]. From a
well-known theory, the calculation of total energy within a periodic model of crystal is not
straightforward [70]. Due to this reason, in the CRYSTAL program, a complex scheme of
preliminary analysis and subsequent calculation of crystalline integrals was introduced. In
our calculations, high convergence tolerances for the Coulomb and exchange integrals have
been chosen for the Coulomb overlap (10−7), Coulomb penetration (10−7), exchange overlap
(10−7), first exchange pseudo-overlap (10−7), and the second exchange pseudo-overlap
(10−14). These tolerances mean that the values of the atomic orbitals overlap, and if these
values are greater than those specified in the calculation, then the Coulomb and exchange
integrals are calculated exactly, otherwise they are neglected or calculated approximately.

The effective atomic charges and bond population were calculated using the Mulliken
analysis [75].

We used a periodic model of a primitive ZnSeO3 cell, consisting of 56 atoms (Figure 7).
The calculated lattice parameters (a, b, c), crystal density (ρV), and effective atomic charges
(qeff) are presented in Table 4, together with experimental results.
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Table 4. Calculated parameters of ZnSeO3 crystal.

Parameter This Work, Calc. This Work, Exper. Exper. [76]

a, Å 5.85 5.90 5.92

b, Å 7.69 7.75 7.66

c, Å 5.19 5.04 5.04

ρV (g/cm3) 5.44 5.58 -

qeff (Zn/Se/O) +1.16/+1.36/−0.84 - -

We are plotted the band structure at the highly symmetric points of the Brillouin zone
and along directions between them, together with the density of the electronic states as
shown Figure 8. The maximum of the valence band appeared near the Y-point, while the
conduction band minimum occurred at T-point, showing the indirect character of the band
structure. The calculated band gap was 3.8 eV. Additionally, as shown by the density of
electronic states, the top of valence band was represented mainly by O 2p states, while the
bottom of conduction band and levels above the bottom are consisted from Se 3d, 4s and
Zn 3d, 4s states, respectively. Thus, it can be claim that we have typical ionic compounds,
although subsequent charge distribution analysis showed significant covalent contribution
to chemical bounds of the crystal.
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6. Conclusions

ZnSeO3 nanocrystals were synthesized and studied for the first time. The nanocrystals
were obtained by chemical and electrochemical deposition into a track-template matrix.
Crystal structure and phase composition were studied by XRD. The crystalline phase
of all samples was the same: an orthorhombic structure, with almost identical unit cell
parameters. The method of CD was more effective in obtaining this crystal compared to the
method of ED. The application of the CD method affords the possibility to fill practically
all nanopores, and thus it is a more convenient and accessible technique. Computer
simulations showed that ZnSeO3 is a direct-gap semiconductor with Eg = 3.8 eV. The
PL spectra at room temperature showed a wide emission band in the spectral range of
400–600 nm. The PL band was caused mainly by zinc and oxygen vacancies.
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