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Abstract: Our paper considers the possibility of the emergence and control of non-equilibrium
states of a quasi-homogenous condensed medium with energy and particle flows in the phase space,
which, first of all, manifest themselves in the explosive development of the asymmetry in the initially
symmetric equilibrium system. This symmetry breaking and the appearance of non-equilibrium in
the system are controlled by the coherent acceleration of the system. Dependencies of thermody-
namic parameters of a strong nonequilibrium system on the indices of disequilibrium in coherently
correlated states are given, and the estimates of the dielectric permittivity in a non-equilibrium
system and modes of plasma acoustic oscillations are made. An estimate of the superconducting
transition temperature under nonequilibrium conditions has been made. It is demonstrated that
the superconducting transition temperature can approach the limiting value, corresponding to a
quantum with its plasma frequency of the medium.

Keywords: strongly nonequilibrium distributions; coherent acceleration; coherently correlated states;
energy flow in the phase space; phase transition temperature

1. Introduction

Advances towards creating methods for controlling the direction of evolutionary
processes are largely based on the development of nonequilibrium thermodynamics, and
interest in these issues continues unabated [1–5]. The emerging understanding that evolu-
tion under certain conditions can be influenced by very insignificant impacts [6–8] makes
it clear that there is growing concern about the possible existence of unconscious, unpre-
dictable controlling influences of random electromagnetic pollutants on the ecology of the
external environment and on biological systems. There is a pressing need to solve problems
of managing self-organization in various complex systems.

It should be noted that despite huge achievements, Prigogine’s nonequilibrium ther-
modynamics [1] is limited by an approximation of local equilibrium states, the strong
non-equilibrium of which lies only in the strong spatial dependence of the parameters
of equilibrium distributions (density, temperature, etc.). Naturally, the management of
system evolution and phase transitions, in this case, is carried out through variations of
these thermodynamic parameters. The peculiarities of strongly nonequilibrium states in
quasi-homogeneous systems and the peculiarities of non-locality influence in coherently
correlated states of complex systems on the sequence of phase transitions and, therefore,
on the evolution of their internal structure are insufficiently studied. The key role of corre-
lations in many-particle systems was first clearly demonstrated in the fundamental works
of N. Bogoliubov on kinetic equations and hydrodynamics [9] (the results of which are
detailed, for example, in Refs. [9,10]).
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A peculiar theory of kinetic equations considering the growth and evolution of struc-
tures in a particle system and non-locality of system states was obtained and analyzed by
Vlasov et al. [11–13] using Cartan geometry (the physical meaning of Cartan geometry is
thoroughly demonstrated in Penrose’s work [14]). Vlasov’s nonlocal statistical mechanics
of a many-particle system and the theory of structure growth are set out in [15–17], where
the non-locality of particle states is the main axiom of his evolutionary theory.

To verify the non-locality of physical phenomena, Bell proposed a theorem (see, for
example, [18]) with inequalities, which now bear his name. The fundamental importance of
this theorem is emphasized in [19]: “What Bell’s theorem, together with the experimental
results, proves to be impossible (subject to a few caveats we will attend to) is not deter-
minism or hidden variables or realism but locality, in a clear sense. What Bell proved, and
what theoretical physics has not yet properly absorbed, is that the physical world itself is
non-local.” The experimental proof of violations of Bell’s inequalities, and therefore the
objective non-locality of particle interaction, was awarded the Nobel Prize in 2022 [20]. The
official formulation of the Nobel Committee is more specific and reads—“for experiments
with entangled photons, establishing violations in Bell’s inequality, and for innovations in
quantum informatics”.

Non-locality in the dynamics and kinetics of particles leads to the fact that the influence
on physical processes is not limited to the infinitesimal vicinity of the considered point but
requires accounting for the finiteness of the interaction region and considering all orders of
differentials of variables describing the system state. There are two qualitative approaches
to describing these effects:

• Operator regularization method: Instead of differential operators for describing the
evolution of the system, for example, functional, integrodifferential equations ([21–23])
and flows in the phase space are used (see, for example, in the Refs. [24–33]).

• Regularization method for the evolution of systems: instead of the four-dimensional
spacetime, for example, the Cartan space is used (see, for example, the works of
Vlasov [15–17]).

In the nonlocal theory of Vlasov, the spacetime in which the statistical theory of dy-
namic systems should be formulated is not the usual four-dimensional Riemann spacetime
but the Cartan space. The Cartan space is a combination of points in the four-dimensional
Riemann spacetime and tangent surfaces of different orders at each point.

The main variables in the statistical theory are not only coordinates, time, and velocities
(momenta) but also accelerations of all orders. In his covariant kinetic equation in the Cartan
space (see Ref. [16]), Vlasov obtained the exact power-law solution for non-inertial reference
systems, i.e., systems in strong nonequilibrium with coherent acceleration.

Physically equivalent descriptions of non-inertial systems with coherent acceleration
are spatially homogeneous systems of particles with phase space flows [24–28]. Exact
power-law solutions for kinetic equations of Boltzmann, Landau, Balescu-Lenard [25–27],
and kinetic equations in fractal media (see [24]) have been obtained for such physical models.

In all the mentioned cases, strongly nonequilibrium particle distributions in phase
space exhibit power-law behavior, which reflects the common physical nature of evolution
control—coherent acceleration and phase space flow (see [28]). It is important to note that
coherent acceleration and the corresponding inertial forces are associated with the variation
of the system’s structure, i.e., its binding energy and inertia [28–30].

Energy flows in the system arise either due to changes in the environment or due to
internal changes in the structure of the system itself (see [28–30]). Importantly, environmen-
tal changes can influence both through the boundary between the designated system and
the environment and uniformly throughout the system if the considered system is fully
immersed in the environment. Each element of the system experiences the influence of
the environment.

Section 2 of this study presents the Vlasov equations on the first tangent bundles
after the corresponding averaging over higher accelerations. In these Vlasov equations,
we explicitly account for the mentioned dependencies between variations in the system’s
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structures, coherent acceleration of many-particle systems, and particle and energy fluxes,
which affect the distributions of charged particles and the characteristics of phase transitions
(see for example, Refs. [31,32]). They can lead to a significant change in the phase transition
temperature, the estimation of which is provided at the end of this article.

Together with the averaged kinetic equations, we obtain the dynamic transport equa-
tions. The dynamic equations in non-inertial reference systems, when averaging over
higher orders of acceleration and considering the evolution of the internal structure of the
system, can exhibit positive feedback that is consistent with the results obtained in [33].
In the same section, we present the covariant Vlasov kinetic equation with the evolution
of the internal structure considered, along with its exact power-law solution expressed
through non-extensive generalizations of Tsallis exponentials [34–37]. The obtained non-
equilibrium distributions in systems with coherent acceleration are consistent with the
general properties of accelerated reference systems [38] and the geometric properties of
systems with constraints [39–42].

The processes of system evolution from an equilibrium system to a non-equilibrium
quasi-stationary state with energy flows and/or the number of particles PS in the phase
space of the system (non-equilibrium phase transitions) are accompanied by the emer-
gence and explosive power-law growth of the asymmetry of the system’s phase space, the
structure of the phase space and the corresponding evolution of the order parameter η.

Section 3 of this study presents the fundamental thermodynamic properties of systems
in strongly non-equilibrium states close to spatial homogeneity. The physical situation
where each element of the system experiences the same influence from its surrounding
environment is crucial for the system’s evolution and corresponds to the action of a mass
force (and the corresponding flow PS), leading to coherent acceleration of the entire sys-
tem [28–30]. This mass force can result from changes in the environment’s structure or
contributions from changes in the internal structure of the system itself, which occur under
the influence of mass forces and coherent acceleration. The properties of nonlinearity, non-
locality, and nonextensiveness [34–37] are closely related to the thermodynamic properties
of coherently correlated systems (see [43–46]).

The properties of nonlinearity, nonlocality, and nonextensiveness (coherent parameter
q) [34] are closely related to the thermodynamic properties of coherently correlated systems
(see [47,48]), anisotropy, and the properties of thin films [49]. In [50], the role of local
nonequilibrium of electron states in the processes of increasing the temperature of the
superconducting transition is shown. The non-equilibrium phase transition of evolution to
a non-equilibrium quasi-stationary state is accompanied by a certain dependence between
the coherence parameter q, the order parameter η and flows PS in its phase space.

In Section 4 of this study, the obtained relationships for non-equilibrium states and par-
ticle distributions are utilized to estimate the dielectric permeability of the non-equilibrium
medium and the parameters of acoustic modes in these non-equilibrium states. At the end
of the section, using the “jelly” model [51] and Ginzburg’s relations for the temperature
of the superconducting transition [52], temperature estimations for the superconducting
transition in these non-equilibrium states are derived.

2. On the Vlasov Kinetic Equations in Systems with Varying Internal Structure

The body forces and coherent accelerations of all orders cause the non-locality and
evolution of the system (changes in its internal structure, see, for example, [15,16]). The
geometric representation of particle dynamics leads to the general Vlasov kinetic equation

for the distribution function f
(

t,
→
r ,
→
u ,
→
a ,

.
→
a ,

..
→
a , . . . . .

)
, which has the form of a continuity

equation in Cartan space:

∂ f
∂t

+ div→
r

(→
u f
)
+ div→

u

(→
a f
)
+ div→

a

( .
→
a f
)
+ . . . . = 0 (1)
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The divergent character of the kinetic equation corresponds to the free motion of
particles in this complete space. From the kinetic Equation (1) for the distribution func-

tion f
(

t,
→
r ,
→
u ,
→
a ,

.
→
a ,

..
→
a , . . . . .

)
in the full space, by successive averaging over higher-order

accelerations, one can obtain a set of averaged physical quantities:

ρ
(

t,
→
r
)
=
∫

d
→
u f
(

t,
→
r ,
→
u
)

, f
(

t,
→
r ,
→
u
)
=
∫

d
.
→
u f
(

t,
→
r ,
→
u ,

.
→
u
)

, f
(

t,
→
r ,
→
u ,

.
→
u
)
=
∫

d
..
→
u f
(

t,
→
r ,
→
u ,

.
→
u ,

..
→
u
)

, (2)

describing a reduced description, a chain of linking equations containing several divergent
terms that correspond to the number of tangent bundles over which no averaging has
been performed. Together with the sequence of kinetic equations that correspond to the
hierarchy of averaging, the dynamic equations for the main average kinematic quantities
(the corresponding equations of motion) also follow [10,16].

Below, we present the Vlasov kinetic equations [16,17] considering the variation of the
internal structure during evolution [28] at the first three main levels of the averaging hierarchy.

2.1. Averaging over all Tangent Spaces, Averaging over Speeds and accelerations of All Orders

With this averaging, we obtain the continuity equation for the density and the equation
of motion in a dissipative medium:

∂ρ

∂t
+ div→

r

(〈→
u
〉

f
)
= 0,

〈
νdis
→
u
〉
=

1
m

→
F
(

t,
→
r , ρ
)

. (3)

Vlasov called the resulting particle dynamics equation the Aristotelian equation of
motion—the average speed when moving in a dissipative medium is proportional to
the force.

2.2. Averaging over Tangent Spaces of Accelerations of all Orders

In this case, we obtain the Vlasov kinetic equation for the distribution function in the
phase space (in terms of coordinates and impulses or velocities) and the averaged equations
of dynamics, which coincide in inertial reference frames with Newton’s dynamic equations
in the first tangent bundle:

∂ fr

∂t
+ div→

r

(→
u fr

)
+ div→

u

(〈→
a
〉

fr

)
= 0;

〈
d
dt

(
m
→
u
)〉

=
→
F (t,

→
r ,
→
u , fr). (4)

This approximation is sufficient in inertial frames of reference, but in non-inertial
frames of reference, Equation (4) must include evolutionary processes with a change in
the internal structure of the system (entropy). In non-inertial systems, the left-hand side
should contain the change in momentum, taking into account viscous dissipative losses
νdis

〈→
u
〉

when interacting with the medium and variations in bonds and internal structure
(and, therefore, entropy) in the base space and the first tangent bundle takes the form(

1
m

d
dt m(S)

)〈→
u
〉

. And the dynamics equation from (4) takes the form:

d
dt
〈→u 〉+ νe f f 〈

→
u 〉 = 1

m

→
F m(t, r,

→
u , { fr})

where
→
F m

(
t, r,

→
u , { fr}

)
is external mass force acting on the system, νe f f =

(
νdis +

1
m

d m(S)
dt

)
—effective self-consistent viscosity, and νe f f

〈→
u
〉

is the averaged self-consistent force of
viscosity between particles and the medium, taking into account the entropy force arising
due to the variation of inertia (see, for example, [18–20]). It can be seen that, under
certain conditions, bond variations can make the effective self-consistent viscosity νe f f
negative [53,54].
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Let us now consider the kinetic equation from (4). The mass force
→
F m

(
t, r,

→
u , { fr}

)
ini-

tiating the evolution process creates an initial coherent acceleration
→
a cog for the subsystem

in the coherence region with the scale: lcog = c2

2 acog
[39–42]. As a result, the subsystem be-

comes coherent and homogeneous within the region with the specified scale, and variations
in the structure and binding energy of the system occur, contributing to the self-consistent
viscous force.

We write the entropy forces that modify the Vlasov equation in the form of a collision
integral in the divergent form:

∂ f
(→

r ,
→
u ,t
)

∂t + div→
r

(→
u f
(→

r ,
→
u , t
))

+ div→
u

(〈 .
→
u
〉

f
(→

r ,
→
u , t
))

= div→
u

(→
j S

)
;

→
j S =

(
− 1

m∇r

(
ωe f f Sq

))
f
(→

r ,
→
u , t
)

;
〈 .
→
u
〉

= 1
m

→
F B, ωe f f ≈ 2π

τe f f
.

(5)

The action of the mass entropy force on a system of particles and the acceleration of
the system, which is inextricably linked with it, force the system to rebuild its internal
structure and, thus, evolve in the tangent bundle of space-time in accordance with the
variational principle of dynamic harmonization.

The kinetic Equation (5) for the particles included in the subsystem in the eight-
dimensional space of the supporting elements can be represented in the covariant form:

_
Divr

(→
u f
)
+ divu

〈_
D
→
u

dτ

〉
f

 = 0 (6)

Given that:

_
Divr

(→
u f
)
= uα

_
Dα f + f

_
Dαuα, divu

〈_
D
→
u

dτ

〉
f

 =
∂

∂uα

〈_
D
→
u

dτ

〉α

f

,

_
Dα f =

∂ f
∂xα
− Γσ

αγuγ ∂ f
∂uσ

, Γσ
αγ =

1
2

gµσ

(
∂gµα

∂xγ
+

∂gµγ

∂xα
−

∂gαγ

∂xµ

)
,

we write (6) by components:

uα ∂ f
∂xα
− Γσ

αγuγ ∂ f
∂uσ

+
∂

∂uα

〈_
D
→
u

dτ

〉α

f + Ps

 = 0. (7)

Let us analyze the solutions of the kinetic equation in an important particular case,
when the explicit contribution of the divergence div→

u (.) into the kinetic equations can be
ignored, and the covariant equation of quasi-stationary states takes the form:

uα ∂ f
∂xα
− Γσ

αγuγ ∂ f
∂uσ

= 0. (8)

This approximation is valid in two cases:

• when there are no external forces in the system and no flow in the phase space PS = 0
(this case corresponds to complete equilibrium in the system);

• when external forces do not act directly in the system, but the flow of energy, particles
or entropy is constant in the phase space PS = const (this corresponds to a strong
deviation from equilibrium).
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Let us consider solutions of the kinetic Equation (7) isotropic in the space of velocities
and stationary in laboratory time, i.e., Let’s pretend that:

∂ f /∂x0 = 0; ∂gαβ/∂x0 = 0, g0i = 0, i = 1, 2, 3.

We emphasize that this stationarity does not imply independence of proper time. In
this approximation:

Γ0
00 = Γ0

ik = 0; Γk
i0 = 0; Γ0

0i =
1

2g00

∂g00

∂xi ; Γi
00 = −1

2
gik

∂g00

∂xk .

Separating the variables, we represent the distribution function in the form:

f
(

xα, uα, u0, t
)
= f

(
xα, uα, u0

)
= ρ(xα)ψ

(
u2
)

ψ0

(
u0
)

, (9)

(1− q)ξ2 = gαβξαξβ, ξα =
uα√

−(1− q)goou0
, u2 = uαuα. (10)

After these relations, from (8) follows the system of equations, which is exactly solved,
and the solution can be expressed in terms of the generalized exponential expq(x) [34]:

ρ
(

xi
)
= ρ0expq

(
−U(x)

w(q)

)
, ψ0

(
u0
)
= ψ0(0)

(
u0

1
1−qcr

)qcr

, ψ
(

ξ2
)
=
(

expq

(
−ξ2

) )q
,

expq(x) =

{
1 + (1− q)x > 0, (1 + (1− q)x)

1
1−q

1 + (1− q)x ≤ 0, 0
(11)

The dependence of the distribution function Fq(ε/T) =
√

ε/Texpq(ε/T) on energy
and coherence index q is shown in Figures 1 and 2.
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surface rises above the zero value.) 

Figure 1. Dependence of the distribution function Fq(ε/T) on energy ε/T and coherence parameters
q < 1. With increasing deviation from equilibrium, there is an increase in localization. (The function
values are represented in one color, and the zero value is represented in blue. The surface rises above
the zero value.)
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These solutions reflect that in the absence of an entropy flow (i.e., at q = 1), a homo-
geneous equilibrium case is realized. The distribution function ψ

(
ξ2) for velocities (or

energies) passes into the Maxwell distribution function, the distribution function ρ
(

xi)
into the Boltzmann distribution, and the function ψ0

(
u0) becomes a constant. There is no

difference between local and laboratory time. To the extent that entropy flows are present
in the system (q 6= 1), the distribution functions over energies and coordinates change from
an exponential dependence to a quasi-power one.

An analysis of the behavior of the solutions shows that for q < 1, the distribution
is localized with an increase in the deviation from 1, and for q > 1, an increase in the
deviation leads to an increase in the delocalization of the distribution function and with it
an increase in the characteristic dispersion of physical quantities that depend on momenta
and energies.

Exact solutions of the kinetic equations of a function with power asymptotic were
studied in [24–27], and the thermodynamic properties of similar functions and states were
obtained in many works [5,28–30,34–37]

An analysis of the exact solutions of the kinetic equations and thermodynamic func-
tions in nonequilibrium states leads to the conclusion about the relationship between the
coherence parameter q and fluxes PS in the phase space in accordance with the relation
q ≈
√

1 + PS [29,30]. In this case, the sign of the flow in the phase space determines the
region q < 1 and region q > 1. The coherence parameter q also can be related to the order
parameter 0 ≤ η ≤ 1 using the relations:

q(η) =

{
q− = 1− η, q ≤ 1
q+ = 1

1−η , q > 1 (12)

2.3. Averaging over Tangent Spaces of Higher-Order Accelerations

With this averaging, we obtain the kinetic equation, taking into account the dynamics
of the system in the base space and the first two tangent bundles:

∂ f
∂t

+ div→
r

(→
u f
)
+ div→

u

(→
a f
)
+ div→

a

(〈 .
→
a
〉

f
)
= 0

d
dt

〈
d
dt

(
m
→
u
)〉

+ νa

〈
d
dt

(
m
→
u
)〉

=
→
F 1

(
t,
→
r ,
→
u ,

.
→
u , f

)
(13)
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In a non-inertial frame of reference, the equation of dynamics (13) for the average
value of acceleration, considering the variation of inertia, takes the form:

d2
〈→

u
〉

dt2 + (2σS + νa)
d
〈→

u
〉

dt
+

(
dσS
dt

+ σ2
S + νaσS

)〈→
u
〉
=

.
→
a cog

(
t,
→
r ,
→
u ,

.
→
u , f

)
.
→
a cog

(
t,
→
r ,
→
u ,

.
→
u , f

)
=

1
m

→
F 1

(
t,
→
r ,
→
u ,

.
→
u , f

)
, σS =

1
m

dm
dt

. (14)

Within the coherence scale, the system can be considered homogeneous with high accu-
racy, and the term div→

r

(→
u f
)

in the kinetic equation can be neglected. In this case, of course,
the main evolution now occurs in tangent bundles—spaces of velocities (energy space) and
accelerations, which form a layered energy phase space and satisfy Equations (11) and (12).

In Equation (12)
→
F 1

(
t,
→
r ,
→
u ,

.
→
u , f

)
is the external force averaged over the derivatives of

accelerations above the first and acting on the system in the energy phase space with coor-

dinates
(→

u ,
→
a
)

, and
.
→
a cog

(
t,
→
r ,
→
u ,

.
→
u , f

)
the corresponding value of the coherent velocity

acceleration (averaged coherent value of the third derivative of the coordinate of the center
of gravity of the excited system).

The value α
〈→

a p

〉
is the average viscosity force between the particles and the medium

in the energy phase space. The viscous force νa

〈→
a p

〉
for a system of charged particles is

the force of radiative friction [55]:

νa

〈→
a p

〉
= − 1

m

→
F rad,

→
F rad =

2
3

q2
e

c3
d2→u
dt2 .

In the case of harmonic excitation with a frequency, the radiative friction force can be
represented as a viscous friction force in the velocity space (energy space):

→
F rad =

2
3

q2
e

c3
d3→r
dt3 = Dτu, Dτ =

2
3

τemeω2, τe =
q2

e
mec3 =

re

c
. (15)

Here we introduced the coefficient of friction Dτ and the characteristic time τe, i.e., the
time it takes the light to travel through the effective radius of an electron. In accordance
with the equations of motion (13), positive feedback arises, and the coherent acceleration
grows exponentially when the threshold is exceeded (determined by the dispersion in the
acceleration space and the temperature of the chaotic component of the dynamics of the
system of particles and the medium). The equations of motion obtained from the Vlasov
kinetic equations agree with the relations for fractal media obtained in [34].

When comparing the equation of dynamics with allowance for radiative friction and
the equation for the evolution of a system under the action of a body force, one can see that
the forces of radiative friction manifest themselves as entropy forces, which are determined
by a change in some structure.

Coherent acceleration of a system of particles leads to the anisotropy of the system—its
properties and distribution functions are different in the direction of coherent acceleration
and on surfaces orthogonal to acceleration and provide qualitatively different thermody-
namic properties.

3. On the Thermodynamics of Coherent-Correlated States of Complex Systems

The degree of order and the probability of the state of the system is characterized
by the number of its possible states Ω, the optimization of which implies the form of the
nonequilibrium distribution function (see, for example, [24]).
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Impulse actions on the surface of condensed media (see [28,29]) can single out spatially
thin regions with high correlations, in which the set of particles have the properties of
strongly nonequilibrium spatially homogeneous systems with flows in the phase space.
The flows in the phase space of the system determine partitioning into the corresponding
physically infinitesimal elements of the system and rearrangement of the phase space. The
properties of the partitioning of the phase space (and, consequently, the thermodynamics of
the system) depend significantly on correlations in the phase space 0 ≤ krp ≤ 1. In this case,
to estimate the magnitude of a physically infinitesimal volume, it is necessary to use the
generalized instead of the Heisenberg uncertainty relations Schrödinger-Robertson ratio:
∆x∆px ≥ 1

2}e f f , where }e f f = } 1√
1−k2

rp
(see [43–46]). Moreover, it should be considered that

correlations krp in the phase space (its internal fractal structure and coherent acceleration)
are related to the order parameter η in a power-law manner, for example, krp ≈ ηαstr with
an index αstr, which depends on the structure of the phase space.

When describing such nonequilibrium systems, it becomes necessary to use the con-
cept of a coherently correlated state [27–29], especially for anisotropic systems such as shells
and thin layers of condensed matter. We note that size quantization modes and nonequilib-
rium distribution functions with several components localized in different energy regions
can appear in thin layers of condensed matter. Quantization modes and acoustic plasma
oscillations [49] can arise in such systems, consistent with coherently correlated states and
significantly affect superconducting transitions.

Due to nonequilibrium properties, which are consistent with coherently correlated
states, these states have specific thermodynamic properties and acoustic plasma oscillations
are initialized. The role of locally nonequilibrium functions in increasing the temperature
of the superconducting transition was studied in [50].

Thermodynamic relations in a coherently correlated state can be obtained using La-
grange multipliers in optimizing a non-extensive generalization of entropy for a fixed
number of particles and energy of the nonequilibrium state.

Defining the distribution functions directly using the thermodynamic formalism in
the corresponding tangent bundles is convenient. The universal distributions obtained
above from nonlocal kinetic equations (see also [29,30]) are realized in self-similar systems
on different scales where the phase space has a fractal structure. To construct the statistics
of such systems, we apply the important approach of K. Tsallis [34]. He proposed, when
determining the entropy and distribution of states, to deform the logarithmic function in
such a way that lnq(x) = x1−q−1

1−q , for large values of the energy of the states, the probability
of their realization would decrease not exponentially quickly but in a power-law manner
(Pareto’s law). The function lnq(x) is the inverse function to the function expq(x) in terms
of which distributions are expressed in coherently accelerated systems.

Let the system with the number of particles N have a subsystem with distinguished
coherence properties and the number of particles Ncog. These numbers of particles naturally

determine the order parameters by the relationship: η =
Ncog

N , N = Ncog + Ng.
The most probable distribution functions are determined by the entropy extremum. To

determine the necessary extrema of entropy, considering the restrictions, we use the method
of Lagrange multipliers. The required entropy optimum for the distribution function fi(εi),

taking into account the restrictions on the number of particles and energy:
w
∑

i=1
εi fi = W,

w
∑

i=1
fi = η is found as the unconditional extremum of the function S̃( fi, α, β), which is the

entropy averaged with the function fi: ∑
i

Si fi = −∑
i

q (
fi

1−q−1)
1−q fi, supplemented by a linear

combination of functions that characterize the constraints:

S̃( fi, α, β) = − q
1− q∑

i

(
fi

2−q − fi

)
− α

(
w

∑
i=1

fi − η

)
− β

(
w

∑
i=1

εi fi −W

)
.
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The condition for the unconditional extremum of the function S̃( fi, α, β) in all variables
fi, α, β gives the system of equations:

− q(2− q)
1− q

fi
1−q +

q
1− q

− α− βεi = 0 (16)

(
w

∑
i=1

fi − η

)
= 0,

(
w

∑
i=1

εi fi −W

)
= 0 (17)

from which follows the expression for the optimal function:

fi = Aqexpq

(
− εi

Tq

)
(18)

Tq(α, β) =
(q + (q− 1)α)

β
, Aq(α, β) =

(
1

2− q

(
1 +

(q− 1)
q

α

)) 1
1−q

The singularity in the normalization factor at q → 2 indicates a phase transition
occurring at these parameters.

To express the Lagrange multipliers in terms of the number of particles and energy,
we must use the normalization relations (15), in which, in the continuous approximation,
we must go from summation to integration and use the density of states proportional

√
ε in

two qualitatively different cases to q < 1 and q > 1.
In this case q < 1, the nonequilibrium distribution function exists in the interval

0 < ε
Tq

< 1
1−q and the normalization conditions have the form:

εmax∫
0

dεε1/2 Aqexpq

(
− ε

Tq

)
= η,

εmax∫
0

dεε3/2 Aqexpq

(
− ε

Tq

)
= W, (19)

For the case q > 1, the region of existence of a nonequilibrium distribution function
can occupy the entire region of positive energies, and the normalization conditions have
the form:

∞∫
0

dεε1/2 Aqexpq

(
− ε

Tq

)
= η,

∞∫
0

dεε3/2 Aqexpq

(
− ε

Tq

)
= W (20)

When calculating the resulting integrals, it is convenient to use the following integral
relation:

Ik(q, w) =

w∫
0

dz zk+1/2expq(−z) =
wk+3/2

k+3/2 2F1

(
k + 3/2,

1
q− 1

, k + 5/2, (1− q)w
)∣∣∣∣

The asymptotics of these integrals are also required:

bk(q) = Ik(q, w)|w→∞ =
Γ
( 3

2 + k
)
Γ
(

1
q−1 −

( 3
2 + k

))
(q− 1)

3
2+kΓ

(
1

q−1

)
Using these integrals, we write the normalization relations in the form:

AqT3/2
q I0

(
q,

εmax

Tq

)
= η, AqT5/2

q I1

(
q,

εmax

Tq

)
= W
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Using these notations, we obtain the normalization conditions:

Tq = kTq(q)
W
η

, Aq = kAq(q)
η(

W
η

)3/2 , wmax =
εmax

Tq
=

{
wmax = 1

1−q , q < 1
wmax → ∞, q ≥ 1

kTq(q) =
I0(q, wmax)

I1(q, wmax)
≈ 2.33− 1.66 q

kAq(q) =
(I1(q, wmax))

3/2

(I0(q, wmax))
5/2 ≈ exp

(
2.796

(1.4− q)0.216 − 2.621

)
(21)

The dependence kTq(q) is close to linear, and kAQ(q) has a singularity at q = 1.4 and is
shown in Figure 3.
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By substituting the expressions for Tq(α, β) and Aq(α, β), one can obtain expressions
for and for the Lagrange multipliers.

In the direction parallel to acceleration, collective processes proceed with decreasing
spatial scales q‖ ≤ 1, energy values m u2

2 are discrete, limited from above, but T‖ limited
from below and can increase:

f‖
(

w‖, T‖, q‖
)
= A‖

(
q‖, T

)
expq‖

(
−

w‖
T‖

)
. (22)

In the direction orthogonal to acceleration, spatial scales sharply increase (tend to

infinity) q⊥ ≥ 1, energy m u⊥2

2 and continuous quantities that can change in any unlimited
intervals and T⊥ can both increase indefinitely and tend to zero:

f⊥(w⊥, T⊥, q⊥) = A⊥(q⊥, T⊥)expq⊥

(
−w⊥

T⊥

)
(23)

Under conditions approaching equilibrium q → 1, the anisotropy disappears. The
greater the degree of nonequilibrium of the system (reflected in the deviation of the nonequi-
librium parameter q from 1), the more pronounced the properties of coherently correlated
states become.

Thereby, the emergence of anisotropy of the non-equilibrium state of shell type due to
the growth of flow in the phase space PS, happens, naturally, as a result of the simultaneous
development of two related processes: localisation in the direction of coherent acceleration
with parameter q ≈

√
1− PS as well as delocalisation in the orthogonal direction with the
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parameter q ≈
√

1 + PS. Wherein, naturally, given that the disequilibrium level decreases,
happens the transition towards the symmetrical equilibrium state: q →

PS→0
1

4. Induced Acoustic Plasma Oscillations in Semiconductors in Coherently Correlated
States and the Superconducting Transition Temperature

The presence of sources of nonequilibrium in the energy region, which is much higher
than the average energy in the equilibrium case, can lead to a pronounced two-component
distribution function in terms of energy. As a model for a distribution function of this type
in our study, we take a two-component distribution function consisting of an equilibrium
distribution function in the region of energies of the order of the Fermi energy (for velocities
u ≈ uF) and a power-law distribution function in the region of high energies.

Due to the fact that the equilibrium distribution function is f0(u, EF, T0) small in the
region u >> uF, we will use the model expression as an analytical representation of the
distribution function:

f (u) = f0(u, EF, T0) + η fs(u, us, q), fs(u, us, q) = Aqexpq

(
− u2

u2
s

)
.

In an equilibrium plasma consisting of two or more groups of charged particles,
weakly damped acoustic plasma waves can propagate. Acoustic plasma oscillations propa-
gating in thin semiconductor films were studied in [49], and acoustic plasma oscillations in
nonequilibrium states of a semiconductor under the action of microwave radiation were
obtained in [50]. Using the distribution function model presented above, we analyze the in-
duced plasma oscillations in a semiconductor. In this model, the permittivity is represented

as [56,57]: εl
(

ω,
→
k
)
= 1 + Reδε + iImδε, гдe мнимaя чacть Imδε = − 8π3e2

mω2

(
up
)3 f
(
up
)

is

directly expressed in terms of the distribution function and the phase velocity up = ω
k , and

the real part by the relation:

Reδε = −
ω2

ps

k2u2
s

4πus

ns

∞∫
0

dz
z2 f(z)
ν2

p − z2 (24)

where ω2
ps = 4πnse2

me
, νp =

up
us

, z = u
us

, us =
√

Tq
T0

uT0 are average speed of the non-
equilibrium part. Contribution to Reδε from the equilibrium part f0(u, EF, T0) has a normal

look −ω2
p

ω2 , and to calculate the contribution of the nonequilibrium part fs(u, q) we use the
integral [58,59]:

Iu
(
up, u, q

)
=
∫

du
u2 fs(u, q)
u2

p − u2 = χq
(
up, u

)
2F1

(
1,

2− q
1− q

,
3− 2q
1− q

,
1 + (q− 1)u2

1 + (q− 1)u2
p

)

where χq
(
up, u

)
= 1

2
(q−1)(1+(q−1)u2)

2−q
1−q

(2−q)(1+(q−1)u2
p)

. If we use asymptotics (22), we get that εl
(

ω,
→
k
)

looks like:

εl
(

ω,
→
k
)
= 1 +

k2

k2
D
−

ω2
p0

ω2 +
k2

e f f (q)

k2 , ke f f (q) =
ωps

ue f f (q)
, (25)

ue f f (q) = 〈u(q)〉 is velocity averaged over the nonequilibrium distribution function
with the nonequilibrium parameter q. Averaging using the integral Ik(q, w) leads to the
dependence on the nonequilibrium parameter shown in Figure 4.
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From (25) and εl
(

ω,
→
k
)
= 0 follows the dispersion law of longitudinal vibrations:

ω2 = ω2
p

(
1 +

k2

k2
D
+

k2
e f f (q)

k2

)−1

.

Dispersion of longitudinal vibrations in the jelly model for different nonequilibrium
parameters is shown in Figure 5.
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the values
ke f f (q)

kD
= 0.1, 0.6, 1.2, respectively.

The influence of the medium on the interaction between electrons and, accordingly, on
the phase transition temperature is conveniently represented by the functional of the permit-
tivity [25], a set of branches of longitudinal vibrations Ωk =

(
ωj(k), EF

)
and force constants:

aj =

(
ω2 ∂ε

∂ω2

)−1

ω2=ω2
j (k)

, ξ = ∏
j

ω

(aj(∑
j

aj)
−1

)

j
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Tc ≈∏
k

Ω
Ak(∑

k
Ak)
−1

k exp

−(µ∑
k

Ak

)−1
, (26)

when there is only one branch of longitudinal oscillations, then for the force constant,
it follows:

a =
ω2(k)

ω2
p

1 +
ω2

ps

k
2
u2

e f f

−1

≈

 k
2
u2

e f f (q)

ω2
ps

2

,

where k = αkF, ue f f = βuF and, accordingly, for Tc:

Tc = }ωp exp
(
− 1

µ(a− 1)

)
, a =

(
n
ns

)(
EF/}ωp

)2
α2β2 (27)

Tc

}ωp
= exp

−
µ

( n
ns

)(
EF
}ωp

ue f f (q)
uF

k
kF

)2

− 1

−1


Figure 6 shows the dependence Tc
}ωp

on the nonequilibrium parameter q.
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Thus, both from the analytical expression for the superconducting transition temper-
ature and from Figure 6, it can be seen that with increasing nonequilibrium, the phase
transition temperature increases strongly and tends to the energy of the quantum of elec-
tronic plasma oscillations.

5. Conclusions

The paper presents the Vlasov kinetic equations and the corresponding dynamic
transfer equations after averaging over higher accelerations, considering the change in the
internal structure and, consequently, the inertia of the system. The obtained exact solutions
of the Vlasov equation, which take into account the variation in the structure of the system,
are given in the form of non-extensive Tsallis distribution functions and are consistent
with the exact solutions of the kinetic equations describing quasi-homogeneous systems
with flows in the phase space, and the thermodynamic distributions, which are obtained
together with the corresponding expressions for the Lagrange coefficients—nonequilibrium
temperature and number of states depending on the order parameter and nonequilibrium
coefficient for coherently correlated states.

For the model distribution function, which reflects the order parameter in the system
and its strong non-equilibrium, the phase transition temperature in the “jelly” model was
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estimated using V. Ginzburg’s functional relations. Using the thermodynamic relations
obtained in the work, the dependence of the transition temperature Tc on nonequilibrium
parameters q is given, and it is shown that with an increase in the nonequilibrium pa-
rameter q, the phase transition temperature Tc increases strongly and tends to the energy
of the of electron plasma oscillations quantum Tc → }ωp under increasing q > 1 at the
nonequilibrium coherently correlated states.

Author Contributions: Conceptualization, S.P.K., R.I.E., V.E.N., A.M.O. and S.W.; methodology,
S.P.K., R.I.E., V.E.N., A.M.O. and S.W.; software, S.P.K. and V.E.N. Novikov; validation, S.P.K., V.E.N.
and A.M.O.; formal analysis, S.P.K., R.I.E., V.E.N., A.M.O. and S.W.; investigation, S.P.K., R.I.E.,
V.E.N., A.M.O. and S.W.; resources, S.P.K. and V.E.N.; data curation, S.P.K., V.E.N. and A.M.O.;
writing—original draft preparation, S.P.K. and V.E.N.; writing-review and editing, S.P.K., R.I.E.,
V.E.N., A.M.O. and S.W.; visualization, S.P.K. and V.E.N.; supervision, S.P.K., V.E.N. and R.I.E.; project
administration; S.P.K., R.I.E., V.E.N., A.M.O. and S.W.; funding acquisition, S.P.K., R.I.E., V.E.N.,
A.M.O. and S.W. All authors have read and agreed to the published version of the manuscript.

Funding: Calculations were performed using Latvian Super Cluster (LASC), located in the Center
of Excellence at Institute of Solid State Physics, the University of Latvia, which is supported by
European Union Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-Teaming.
Phase two under Grant Agreement No. 739508, project CAMART.

Data Availability Statement: Not applicable.

Acknowledgments: S.P.K. acknowledges support by the National Academy of Sciences of Ukraine
(Project No.0116U002067). S.P.K. thanks the Max-Planck-Institute for Chemical Physics of Solids (Dres-
den, Germany) for their support and hospitality during his visit.A.M.O. acknowledges Narodowe
Centrum Nauki (NCN, Poland) Project No.2016/23/B/ST3/00839.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations; Wiley:

Hoboken, NJ, USA, 1977.
2. Liboff, R. Introduction to the Theory of Kinetic Equations; John Wiley & Sons: Hoboken, NJ, USA, 1969.
3. Grad, H. Principles of the Kinetic Theory of Gases. In Handbuch der Physik XII; Flugge, S., Ed.; Springer: Berlin/Heidelberg,

Germany, 1958.
4. Truesdell, C. Rational Thermodynamics; McGraw-Hill: New York, NY, USA, 1969.
5. Jou, D.; Casas-Vazquez, J.; Lebon, G. Extended Irreversible Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2006.
6. Fradkov, A. On the application of cybernetic methods in physics. Uspekhi Fiz. Nauk. 2005, 175, 113–138. [CrossRef]
7. Binhi, V.N.; Savin, A.V. The effects of weak magnetic fields on biological systems: Physical aspects. Uspekhi Fiz. Nauk. 2003, 173,

265–300.
8. Hide, R. A path of discovery in geo physical fluid dynamics. Astron. Geophys. 2010, 51, 4.16–4.23. [CrossRef]
9. Bogolubov, N.N. Problems of Dynamic Theory in Statistical Physics; Technical Information Service: Oak Ridge, TN, USA, 1960.
10. Balescu, R. Equilibrium and Non-Equilibrium Statistical Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1975.
11. Cartan, E. La Methode du Repµere Mobile, la Theorie des Groupes Continus et les Espaces Generalizes; Esposes de Geometrie; Hermann:

Paris, France, 1935; Volume 5.
12. Sharpe, R.W. Differential Geometry, Cartan’s Generalization of Klein’s Erlangen Program; Springer: New York, NY, USA, 1997.
13. Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley InterScience: Hoboken, NJ, USA, 1963; Volume 1.
14. Penrose, R. The Road to Reality; Jonatan Cape: London, UK, 2004.
15. Vlasov, A.A. The Theory of Many Particles; Gordon and Breach: New York, NY, USA, 1950.
16. Vlasov, A.A. Statistical Distribution Functions; Nauka: Moscow, Russia, 1966.
17. Vlasov, A.A. Nonlocal Statistical Mechanics; Nauka: Moscow, Russia, 1978.
18. Bell, J. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1987.
19. Maudlin, T. What Bell Did. J. Phys. A Math. Theor. 2014, 47, 424010.
20. The Nobel Prize in Physics 4 October 2022. Available online: https://www.nobelprize.org/uploads/2022/10/press-physicsprize2

022-2.pdf (accessed on 5 September 2023).

https://doi.org/10.3367/UFNr.0175.200502a.0113
https://doi.org/10.1111/j.1468-4004.2010.51416.x
https://www.nobelprize.org/uploads/2022/10/press-physicsprize2022-2.pdf
https://www.nobelprize.org/uploads/2022/10/press-physicsprize2022-2.pdf


Symmetry 2023, 15, 1732 16 of 17

21. Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Dover Publications: Mineola, NY, USA, 2005.
22. Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Taylor & Francis: Abingdon-on-

Thames, UK, 1993; ISBN 978-2-88124-864-1.
23. Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002.
24. Adamenko, S.; Bogolubov, N.; Novikov, V.; Kruchinin, S. Self-organization and nonequilibrium structures in the phase space. Int.

J. Mod. Phys. B 2008, 22, 2025–2045.
25. Kats, A.V.; Kontorovich, V.M.; Moiseev, S.S.; Novikov, V.E. Power solutions of the Boltzmann kinetic equation describing the

distribution of particles with flows over the spectrum. Pis’ma Zh. Eksp. Teor. Fiz. 1975, 21, 13–16.
26. Karas, V.; Novikov, V.; Moiseev, S. Exact power solutions of kinetic equations in solid-state plasma. Zh. Eksp. Teor. Fiz. 1976, 71,

744.
27. Kononenko, S.I.; Balebanov, V.; Zhurenko, V.; Kalantaryan, O.; Karas, V.I.; Muratov, V.; Kolesnic, V.; Novikov, V.E.; Potapenko, I.;

Sagdeev, R.Z.; et al. Nonequilibrium distribution functions of electrons in the plasma of a semiconductor irradiated by fast ions.
Plasma Phys. Rep. 2004, 30, 671–686. [CrossRef]

28. Adamenko, S.; Selleri, F.; Merwe, A. Controlled Nucleosynthesis. Breakthroughs Experiment and Theory; Springer: Dordrecht, The
Netherlands, 2007.

29. Adamenko, S.; Bolotov, V.; Novikov, V. Control of multiscale systems with constraints, Interdisciplinary Studies of Complex
Systems. Basic principles of the concept of evolution of systems with varying constraints. Interdiscip. Stud. Complex Syst.
Dragomanov Natl. Pedagog. Univ. 2012, 1, 33–77.

30. Adamenko, S.; Bolotov, V.; Novikov, V. Control of multiscale systems with constraints. Geometrodynamics of the evolution of
systems with varying constraints. Interdiscip. Stud. Complex Syst. 2013, 2, 60–125.

31. Kruchinin, S.P.; Klepikov, V.F.; Novikov, V.E. Nonlinear current oscillations in the fractal Josephson junction. Mater. Sci. 2005, 23,
1003–1013.

32. Klepikov, V.; Kruchinin, S.; Novikov, V.; Sotnikov, A. Composite materials with radioactive inclusions as artificial radio absorbing
covering. Rev. Adv. Mater. Sci. 2006, 12, 127–132.

33. Klepikov, V.; Novikov, V.; Kruchinin, S. Dynamics of charged particles in fractal media. Mod. Phys. Lett. B 2020, 34, 2040066.
[CrossRef]

34. Tsallis, C. Nonextensive thermostatics: Brief review and comments. Phys. A Stat. Mech. Its Appl. 1995, 221, 277–290. [CrossRef]
35. Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009.
36. Abe, S.; Okamoto, Y. (Eds.) Nonextensive Statistical Mechanics and Its Application; Springer: Berlin/Heidelberg, Germany, 2000.
37. Tsallis, C.; Baldovin, F.; Cerbino, R.; Pierobon, P. Introduction to Nonextensive Statistical Mechanics and Thermodynamics. arXiv

2003, arXiv:cond-mat/0309093.
38. Misner, C.W.; Thorn, K.S.; Wheeler, J.A. Gravity; W. H. Freeman and Company: New York, NY, USA, 1973; Volume 1.
39. Podosenov, S.A. The structure of the space-time and the fields of bound charges. Izv. Vuzov Ser. Fiz. 1997, 10, 63–74. [CrossRef]
40. Podosenov, S.A.; Potapov, A.A.; Sokolov, A.A. Impulsive Electrodynamics of Wideband Radiosystems and the Fields of Bound Structures;

Radiotekhnika: Moscow, Russia, 2003.
41. Kinnersley, W. Field of an Arbitrary Accelerating Point Mass. Phys. Rev. 1969, 186, 1335. [CrossRef]
42. Marakhtanov, M.K.; Okunev, V.S. Influence of mechanical collision macroobjects on nuclear-physical properties of components of

their nuclides. Her. Bauman Mosc. State Tech. Univ. Nat. Sci. 2016, 1, 61–75. [CrossRef]
43. Dodonov, V.; Man’ko, V. Generalizations of the uncertainty relation in quantum mechanics. Tr. FIAN 1987, 183, 5–70.
44. Srodinger, E. About Heisenberg Uncertainty Relation. Ber. Kgl. Akad. Wiss. Berlin 1930, 24, 296.
45. Robertson, H.P. A general formulation of the uncertainty principle and its classical interpretation. Phys. Rev. 1930, A35, 667.
46. Jammer, M. The Conceptual Development of Quantum Mechanics; McGraw Hill: New York, NY, USA, 1966.
47. Adamenko, S.V.; Vysotsky, V.I. Correlated states of interacting particles and the problem of transparency of the Coulomb barrier

at low energy in nonstationary systems. Zh. Eksp. Teor. Fiz. 2010, 80, 23–31.
48. Adamenko, S.; Vysotsky, V. Peculiarities of formation and application of correlated states in non.stationary systems at low energy

of interacting particles. Zh. Eksp. Teor. Fiz. 2012, 141, 276–287.
49. Kuchma, A.; Sverdlov, V. Quantum Acoustic Waves in Thin Semiconductor Films. FTP 1986, 20, 407–412.
50. Karas, V.I.; Moiseyev, S.S.; Novikov, V.E.; Seminozhenko, V.P. The Role of Energy Locally Nonequilibrium Distributions of

Electronic Excitations in Raising the Tc. Low Temp. Phys. 1977, 3, 695–704.
51. Kruchinin, S. Modern aspect of superconductivity: Theory of superconductivity. World Sci. 2021, 52, 308.
52. Ginzburg, V.L.; Kirzhnitsa, D.A. (Eds.) Problems of High-Temperature Superconductivity; Nauka: Moscow, Russia, 1977.
53. Starr, V. Physics of Negative Viscosity Phenomena; McGraw Hill: New York, NY, USA, 1968.
54. Marchetti, M.; Ramaswamy, S.; Liverpool, T. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143. [CrossRef]
55. Rohrlich, F. The dynamics of a charged sphere and the electron. Am. J. Phys. 1997, 65, 1051–1056. [CrossRef]
56. Chen, F.F. Introduction to Plasma Physics and Controlled Fusion; Springer: Cham, Switzerland, 2015.
57. Kirzhnits, D.A.; Lozovik, Y.E.; Shpatakovskaya, G.V. Statistical model of matter. Sov. Phys.-Usp. 1975, 18, 649–672. [CrossRef]

https://doi.org/10.1134/1.1788761
https://doi.org/10.1142/S0217984920400667
https://doi.org/10.1016/0378-4371(95)00236-Z
https://doi.org/10.1007/BF02514522
https://doi.org/10.1103/PhysRev.186.1335
https://doi.org/10.18698/1812-3368-2016-1-61-75
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1119/1.18719
https://doi.org/10.1070/PU1975v018n09ABEH005199


Symmetry 2023, 15, 1732 17 of 17

58. Abramovits, M.; Stigan, I. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables; National Bureau of
Standards: Gaithersburg, MD, USA, 1964.

59. Bateman, H. Higher Transcendental Functions; McGraw Hill: New York, NY, USA, 1953; Volume 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	On the Vlasov Kinetic Equations in Systems with Varying Internal Structure 
	Averaging over all Tangent Spaces, Averaging over Speeds and accelerations of All Orders 
	Averaging over Tangent Spaces of Accelerations of all Orders 
	Averaging over Tangent Spaces of Higher-Order Accelerations 

	On the Thermodynamics of Coherent-Correlated States of Complex Systems 
	Induced Acoustic Plasma Oscillations in Semiconductors in Coherently Correlated States and the Superconducting Transition Temperature 
	Conclusions 
	References

